# WELCOME TO THE



# WEBINAR SERIES

- This Webinar is being presented from a computer with a resolution of 1280 X 1024.
- Using a similar setting on your machine may improve your viewing experience.
- The webinar will start at 12 noon Central/1:00 PM Eastern



# FY 2021 Webinar #3 BcT Enhancements

**February 23, 2021** 

# FY 2021 Webinar #3, BcT Enhancements

#### **Moderator:**

- Clark Morrison, North Carolina Department of Transportation; Chair
- Hari Nair, Virginia
   Department of
   Transportation; Co-chair

#### **Presenters:**

- Harold Von Quintus, ARA
- Wouter Brink, ARA
- Yanbin Zhang, ARA

Presentation will be available for viewing on the ME-Design Resource website:

http://www.me-design.com



#### **Pavement ME Task Force Members**

- 1. Clark Morrison, PE, North Carolina DOT, Chair
- 2. Ryan Fragapane, AASHTO Project Manager
- 3. Hari Nair, PE, Virginia DOT, Vice-Chair
- 4. Felix Doucet, Eng., Quebec MOT
- 5. David Holmgren, PE, Utah DOT
- 6. Patrick Bierl, PE, Ohio DOT
- 7. Dulce Feldman, PE, California DOT
- 8. Kumar Dave, PE, Indiana DOT
- 9. Susanne Chan, Ontario MOT, TAC Liaison
- 10. Tom Yu, PE, FHWA Liaison



# FY 2021 Webinar #3, BcT Enhancements

- Phones are being muted.
- Please post your questions in the Q&A box. This can be accessed by clicking on the Webex Q&A button.
- The presenters will answer all questions at the end of the webinar/demonstration as time permits.
- Questions not answered, because of time, will be responded to separately.



### FY 2021 Webinar #3 BcT Enhanements

Poll 1: Questions 1, 2, and 3





- 1. How many individuals are viewing this webinar at your location?
  - 0
  - 2
  - 3 to 5
  - More than 5
- 2. What is your affiliation?
  - State Government
  - Federal Government
  - Contractor/Association
  - Consultant
  - Academia



- 3. What type of deflection equipment is typically used by you or your organization?
  - Dynatest Version
  - Kuab
  - JILS
  - Another device is used
  - Do not use deflection basin tests for rehabilitation design.



## Prerequisites for this Webinar

# Prior experience with:

- FWD deflection basin testing.
- Backcalculation of elastic layer modulus values.
- Using a backcalculation software tool, preferably the BcT.



### **Learning Outcomes**

- 1. Apply layer thickness data in the segmentation process using the BcT.
- 2. Determine the pavement structure simulation used in backcalculation.
- 3. Evaluate the results from the BcT backcalculation process for use in rehabilitation design.



# FY 2021 – Webinar 3: BcT Enhancements

### Outline of today's webinar:

- 1. Introduction; Overview of BcT Enhancements
- 2. Demonstration of BcT Enhancements
- 3. Summary and Closing Comments
- 4. Question and Answer Session





#### **BcT Enhancements**

- 1. Added \*.mdb format for deflection data.
- 2. Added layer thickness input file.
- 3. Added sensor spacing file button.
- 4. Added chart to display layer thicknesses, along with layer definition table.
- 5. Layer thickness automatically populated in structure simulation, if thickness file available.
- 6. Stiff or rigid layer button added to structure definition.
- 7. Depth to rigid layer display chart added.
- Temperature correction feature added.
- Export to BcT data file added.





# BcT software and documentation can be downloaded from AASHTWare web site

http://www.me-design.com





# How do we get the BcT?

1. Included in AASHTOWare PMED License

2. Standalone single user purchase

Annual license fee: \$1,250

Link to AASHTOWare Purchasing

#### **BcT Software**



AASHTOWare Pavement ME Design license purchase is available at the AASHTOWare website (US and Canada Only). For International orders please visit the international licensing page.





#### SOFTWARE INSTALLATION AND LICENSING

ARCHTONburth Hechanistic Strakest Personen Design Comple ASSYCTHAMP (2011 Science sobal Selections)
Accusemental sobal Selection (2)

About NE Design

- Software and Hardware Requirements
- Software Download
- Software Licensing and Activation
- Database Resource Documents
- Example ME Design Projects
- Backcalculation Tools

To install AASHTOWare Backcalculation Tools on your computer, extract the files included in the AASHTOWareBackcalculationToolsInstaller.zip file to a temporary directory. Run the AASHTOWareBackcalculationToolsInstaller.exe [v1.0.6] file from the temporary directory and select install. An installation walkthrough and step-by-step instructions for license activation can be found here. Please note that v1.0.6 requires Microsoft .Net Framework 4.8.

#### Overview and Features of BcT







# FY 2021 – Webinar 3: BcT Enhancements

#### Outline of today's webinar:

- Introduction; Overview of BcT Enhancements
- 2. Demonstration of BcT Enhancements
- 3. Summary and Closing Comments
- 4. Question and Answer Session





#### **Demonstration of BcT Enhancements**

- 1.Input FWD Data
- 2. Segmentation Sensors
- 3. Final Segmentation
- 4. Structure Definition
- 5.Backcalculation
- 6. Physical Features
- 7. Export to ME Design

















| 110 | 0          | <b>*</b> : [ | ×                 | f <sub>x</sub> |        |       |            |       |                    |
|-----|------------|--------------|-------------------|----------------|--------|-------|------------|-------|--------------------|
| 4   | Α          | В            | С                 | D              | Е      | F     | G          | Н     |                    |
| 1   | StationDis | Layer1       | Layer2            | Layer3         | Layer4 |       |            |       |                    |
| 2   | 89         | 9.82         | 11.24             | 24             |        |       |            |       |                    |
| 3   | 150        | 9.54         | 9.88              | 24             |        |       |            |       |                    |
| 4   | 266        | 9.82         | 10.17             | 24             |        |       |            |       |                    |
| 5   | 515        | 10           | 9.79              | 24             |        |       |            |       |                    |
| . 6 | 570        | 10.28        | 9.86              | 24             |        | amal  | a fila     | for   | mat:               |
| 7   | 615        | 10.37        | 10.39             | 24             |        | ampl  | e me       | 101   | mat.               |
| 8   | 700        | 9.91         | 9.94              | 24             | 0 -    | _1!   | 4 D.       | !     | al avanTlatala asv |
| 9   | 1000       | 9.82         | 10.4              | 24             | Se     | ction | $I^{-}$ B( | oring | gLayerThick.csv    |
| 10  | 1200       | 9.45         | 10.72             | 24             |        |       |            |       |                    |
| 11  | 1500       | 10.18        | 9.34              | 24             |        |       |            |       |                    |
| 12  | 1700       | 9.72         | 10.49             | 24             |        |       |            |       |                    |
| 13  | 2400       | 9.54         | 9.73              | 24             |        |       |            |       |                    |
| 14  | 2500       | 9.82         | 8.12              | 24             |        |       |            |       |                    |
| 15  | 2618       | 9.63         | 9.8               | 24             |        |       |            |       |                    |
| 16  | 2695       | 9.63         | 10.26             | 24             |        |       |            |       |                    |
| 17  | 2760       | 9.45         | 10.03             | 24             |        |       |            |       |                    |
| 18  |            |              |                   |                |        |       |            |       |                    |
| 19  |            |              |                   |                |        |       |            |       |                    |
| 20  |            |              |                   |                |        |       |            |       |                    |
|     | <b>←</b> → | Section      | AASHTOWare Powers |                |        |       |            |       |                    |











#### **Demonstration of BcT Enhancements**

- 1.Input FWD Data
- 2. Segmentation Sensors
- 3. Final Segmentation
- 4. Structure Definition
- 5.Backcalculation
- 6. Physical Features
- 7. Export to ME Design





## 2. Segmentation Sensors







#### **Demonstration of BcT Enhancements**

- 1.Input FWD Data
- 2. Segmentation Sensors
- 3. Final Segmentation
- 4. Structure Definition
- 5.Backcalculation
- 6. Physical Features
- 7. Export to ME Design





# 3. Final Segmentation







# 3. Final Segmentation







#### **Demonstration of BcT Enhancements**

- 1.Input FWD Data
- 2. Segmentation Sensors
- 3. Final Segmentation
- 4. Structure Definition
- 5.Backcalculation
- 6. Physical Features
- 7. Export to ME Design





#### 4. Structure Definition







#### 4. Structure Definition







#### **Demonstration of BcT Enhancements**

- 1.Input FWD Data
- 2. Segmentation Sensors
- 3. Final Segmentation
- 4. Structure Definition
- 5.Backcalculation
- 6. Physical Features
- 7. Export to ME Design





#### 5. Backcalculation







#### 5. Backcalculation







#### 5. Backcalculation







#### **Demonstration of BcT Enhancements**

- 1.Input FWD Data
- 2. Segmentation Sensors
- 3. Final Segmentation
- 4. Structure Definition
- 5.Backcalculation
- 6. Physical Features
- 7. Export to ME Design





## 6. Physical Features Backcalculation







#### **Demonstration of BcT Enhancements**

- 1.Input FWD Data
- 2. Segmentation Sensors
- 3. Final Segmentation
- 4. Structure Definition
- 5.Backcalculation
- 6. Physical Features
- 7. Export to ME Design





### 7. Export to ME Design







## 7. Export to ME Design

| > 7_Projects > AASHTO > AASHTO_ | BcT Items > test files[2] > Secti | on_1              |        |
|---------------------------------|-----------------------------------|-------------------|--------|
| Name                            | Date modified                     | Туре              | Size   |
| EverCalc Export                 | 2/22/2021 10:38 AM                | File folder       |        |
| EVERCALC.STD                    | 2/22/2021 7:06 PM                 | STD File          | 1 KB   |
| Section_1_S1.DEF                | 2/22/2021 7:06 PM                 | DEF File          | 4 KB   |
| Section_1_S1.FIL                | 2/22/2024 7.06 DLA                | FIL FIL           | 1 I/D  |
| Section_1_S1.GEN                | Exporting the files:              |                   |        |
| Section_1_S1.LOG                | •                                 | •                 |        |
| Section_1_S1.OUT                | Evercal                           | c Export          |        |
| Section_1_S1.SUM                | Evereal                           | e filos sumr      | mary   |
| Section_1_S2.DEF                | Evercalc files summary            |                   |        |
| Section_1_S2.FIL                | Section                           | 1 universal       | CSV    |
| Section_1_S2.GEN                | Coolion                           |                   | .00 4  |
| Section_1_S2.LOG                | 2/22/2021 7:06 PM                 | Text Document     | 106 KB |
| Section_1_S2.OUT                | 2/22/2021 7:06 PM                 | OUT File          | 242 KB |
| Section_1_S2.SUM                | 2/22/2021 7:06 PM                 | SUM File          | 22 KB  |
| Section_1_universal.csv         | 2/22/2021 6:41 PM                 | Microsoft Excel C | 35 KB  |
| SensorSpacings.csv              | 2/22/2021 1:31 PM                 | Microsoft Excel C | 1 KB   |
|                                 |                                   |                   |        |





## 7. Export to ME Design







# FY 2021 – Webinar 3: BcT Enhancements

#### Outline of today's webinar:

- Introduction; Overview of BcT Enhancements
- Demonstration of BcT Enhancements
- 3. Summary and Closing Comments
- Question and Answer Session





## Summary and Closing Thoughts

- The enhanced BcT version was based on suggestions from the users.
- Additional suggestions should be submitted to the Task Force for future enhancements and improvements.



#### FY 2021 Webinar #3 BcT Enhancements

# Poll 2: Questions 4, 5, and 6





- 4. Have you used the BcT program?
  - Yes
  - No
- 5. Which of the following backcalculation programs do you typically use for rehabilitation design?
  - BcT
  - MODULUS
  - MODCOMP
  - EVERCALC
  - ELMOD
  - Another Program
  - Have not used a backcalculation program



- 6. Do you or your organization use ground penetrating radar to determine pavement layer thickness?
  - No
  - Yes



# FY 2021 – Webinar 3: BcT Enhancements

#### Outline of today's webinar:

- Introduction; Overview of BcT Enhancements
- Demonstration of BcT Enhancements
- 3. Summary and Closing Comments
- 4. Question and Answer Session



# QUESTION AND ANSWER SESSION



We welcome comments & suggestions for future webinars; Send an email to <a href="mailto:pavementmedesign@ara.com">pavementmedesign@ara.com</a>.



#### FY 2021 – Webinar Series

#### Remember:

- Webinar #4: Asphalt overlay design for pavements with multiple overlays and deflection data.
- May/June 2021.



## How do we get the BcT?

1. Included in AASHTOWare PMED License

2. Standalone single user purchase

Annual license fee: \$1,250

Link to AASHTOWare Purchasing

### Thank you for Attending the Webinar!

## AASHTOWare Pavement ME-Design Contacts:

 Ryan Fragapane, AASHTO <u>rfragapane@aashto.org</u> Phone: (202) 624-3632

 Clark Morrison, NCDOT <u>cmorrison@ncdot.gov</u>

ME Design Resource Website <a href="http://www.me-design.com">http://www.me-design.com</a>

## Pavement ME Design Users Group Contact:

Jennifer Albert, FHWA
 <u>Jennifer.Albert@dot.gov</u>

Help Desk, Customer Support:

#### **PREFERRED**

- Pavement ME Design Help Desk pavementmedesign@ara.com
- Phone: (217) 356-4500

#### Other ARA Staff:

- Chad Becker
   <u>cbecker@ara.com</u>
- Wouter Brink, <u>wbrink@ara.com</u>
- Harold Von Quintus, P.E.
   hvonquintus@ara.com

Phone: (217) 356-4500

